MATH 2028 Honours Advanced Calculus II 2022-23 Term 1 Problem Set 5

due on Oct 21, 2022 (Friday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Problems to hand in

1. Let $\Omega \subset \mathbb{R}^3$ be the open subset

$$\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 < a^2, z > 0\}.$$

Evaluate the integral $\int_{\Omega} z \ dV$ using spherical coordinates. Justify your answer carefully.

- 2. Let $\Omega \subset \mathbb{R}^2$ be the open subset lying in the first quadrant and bounded by the hyperbolas xy = 1, xy = 2 and the lines y = x, y = 4x. Evaluate the integral $\int_{\Omega} x^2 y^3 dA$.
- 3. Let $\Omega \subset \mathbb{R}^3$ be the open tetrahedron with vertices (0,0,0), (1,2,3), (0,1,2) and (-1,1,1). Evaluate the integral $\int_{\Omega} (x+2y-z) \ dV$.
- 4. Let $\Omega \subset \mathbb{R}^2$ be the open subset bounded by x=0, y=0 and x+y=1. Evaluate the integral $\int_{\Omega} \cos\left(\frac{x-y}{x+y}\right) dA$. (Hint: note that the integrand is un-defined at the origin.)

Suggested Exercises

- 1. Let $\Omega \subset \mathbb{R}^2$ be the open subset bounded by the curve $x^2 xy + 2y^2 = 1$. Express the integral $\int_{\Omega} xy \ dA$ as an integral over the unit disk in \mathbb{R}^2 centered at the origin.
- 2. Find the volume of the solid region $\Omega \subset \mathbb{R}^3$ bounded below by the surface $z = x^2 + 2y^2$ and above by the plane z = 2x + 6y + 1 by expressing it as an integral over the unit disk in \mathbb{R}^2 centered at the origin.
- 3. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ and the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$.
- 4. Let $\Omega \subset \mathbb{R}^2$ be the open triangle with vertices (0,0), (1,0) and (0,1). Evaluate the integral $\int_{\Omega} e^{(x-y)/(x+y)} dA$
 - (a) using polar coordinates;
 - (b) using the change of variables u = x y, v = x + y.
- 5. Let $\Omega \subset \mathbb{R}^2$ be the open subset in the first quadrant bounded by y=0, y=x, xy=1 and $x^2-y^2=1$. Evaluate the integral $\int_{\Omega}(x^2+y^2)\ dA$ using the change of variables $u=xy, v=x^2-y^2$.
- 6. Let $B^n(r)$ denote the closed ball of radius a in \mathbb{R}^n centered at the origin.

- (a) Show that $Vol(B^n(r)) = \lambda_n r^n$ for some positive constant λ_n .
- (b) Compute λ_1 and λ_2 .
- (c) Compute λ_n in terms of λ_{n-2} .
- (d) Deduce a formula for λ_n for general n. (Hint: consider two cases, according to whether n is even or odd.)

Challenging Exercises

1. (a) Let $g: A \to \mathbb{R}^n$ be a C^1 map from an open subset $A \subset \mathbb{R}^n$. Denote the set

$$S = \{ x \in A \mid \det Dg(x) = 0 \}.$$

Prove that g(S) has measure zero in \mathbb{R}^n .

(b) Use (a) to prove that the change of variables theorem still holds even if g is only a C^1 bijective map.